Skip to main content
hyi
Banner
banner
bn

Simulating pumping-induced regional land subsidence with the use of InSAR and field data in the Toluca Valley, Mexico

A multidisciplinary approach is presented here for quantifying land subsidence in a heavily pumped aquifer system with complex stratigraphy. The methodology consists in incorporating Terzaghi's 1D instantaneous compaction principle into a 3D groundwater flow model that is then applied and
calibrated to reproduce observed hydraulic heads and compaction for the Toluca Valley, Mexico. Differential Interferometric Synthetic Aperture Radar (D-InSAR), a generated 3D-geological model, extensometers, monitoring wells, and available literature are used to constrain the model. The D-InSAR
measured subsidence, extensometers, and numerical simulations of subsidence agree relatively well. Simulations show that since regional subsidence began in the mid 1960s there has been up to 2 m of subsidence in the industrial corridor, where heavy pumping and thick clay layers are found. This study
shows that an approach using various sources of data is useful in estimating and constraining the vertical component of the inelastic skeletal specific storage.

Status
In progress
Type
Project
Project URL
http://geoscan.nrcan.gc.ca/starweb/geoscan/servlet.starweb?path=geoscan/fulle.web&search1=R=291833
Start Date
End Date

The Great Lakes - St. Lawrence Research Inventory is an
interactive, Internet-based, searchable database created as a tool to collect and disseminate
up-to-date information about research projects in the
Great Lakes - St. Lawrence Region.