Skip to main content

Recent AEM case study examples using a Full Waveform time-domain system for near-surface applications

A new time-domain design implementation for the VTEM helicopter time-domain EM system, known as "Full-waveform" VTEM, addresses the early time issues that have been limiting its shallow mapping capability for near-surface applications.
The Full-waveform design implementation consists of a combination of a) streamed half-cycle recording of transmitter and receiver waveform data, as well as b) continuous system calibration corrections, b) parasitic-noise and transmitter-drift corrections, and d) ideal-waveform-deconvolution
corrections that are applied in a separate post-processing step. This leads to an improvement in usable early time data from ~100usec in standard VTEM systems to ~20usec for Full waveform VTEM. This results in a vastly improved near-surface hydrogeologic characterization.
The Full-waveform system and theory were previously described by Legault et al. (2012). This paper presents VTEM case-study examples with emphasis on near-surface applications.

In progress
Project URL
Start Date
End Date

The Great Lakes - St. Lawrence Research Inventory is an
interactive, Internet-based, searchable database created as a tool to collect and disseminate
up-to-date information about research projects in the
Great Lakes - St. Lawrence Region.